A Lightweight on-the-fly Capitalization System for Automatic Speech Recognition
نویسندگان
چکیده
This paper describes a lightweight method for capitalizing speech transcriptions. Several resources were used, including a lexicon, newspaper written corpora and speech transcriptions. Different approaches were tested both generative and discriminative: finite state transducers, automatically built from Language Models; and maximum entropy models. Evaluation results are presented both for written newspaper corpora and speech transcriptions of broadcast news corpora.
منابع مشابه
A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملDesigning and implementing a system for Automatic recognition of Persian letters by Lip-reading using image processing methods
For many years, speech has been the most natural and efficient means of information exchange for human beings. With the advancement of technology and the prevalence of computer usage, the design and production of speech recognition systems have been considered by researchers. Among this, lip-reading techniques encountered with many challenges for speech recognition, that one of the challenges b...
متن کاملRecovering capitalization and punctuation marks for automatic speech recognition: Case study for Portuguese broadcast news
The following material presents a study about recovering punctuation marks, and capitalization information from European Portuguese broadcast news speech transcriptions. Different approaches were tested for capitalization, both generative and discriminative, using: finite state transducers automatically built from language models; and maximum entropy models. Several resources were used, includi...
متن کاملSpeech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions
Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...
متن کاملOff-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model
In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...
متن کامل